Agentic AI FAQs

· 7 min read
Agentic AI FAQs

Agentic AI refers to autonomous, goal-oriented systems that can perceive their environment, make decisions, and take actions to achieve specific objectives. Agentic AI is a more flexible and adaptive version of traditional AI. Agentic AI is a powerful tool for cybersecurity.  agentic ai application security  allows continuous monitoring, real time threat detection and proactive response.
How can agentic AI enhance application security (AppSec) practices? Agentic AI has the potential to revolutionize AppSec by integrating intelligent agents within the Software Development Lifecycle (SDLC). These agents can continuously monitor code repositories, analyze commits for vulnerabilities, and leverage advanced techniques like static code analysis, dynamic testing, and machine learning to identify a wide range of security issues. Agentic AI prioritizes vulnerabilities according to their impact in the real world and exploitability. This provides contextually aware insights into remediation. What is a code property graph (CPG), and why is it important for agentic AI in AppSec?  ai security upkeep  (CPG) is a rich representation of a codebase that captures relationships between various code elements, such as functions, variables, and data flows. Agentic AI can gain a deeper understanding of the application's structure and security posture by building a comprehensive CPG. This contextual awareness allows the AI to make better security decisions and prioritize vulnerabilities. It can also generate targeted fixes. How does AI-powered automatic vulnerability fixing work, and what are its benefits? AI-powered automatic vulnerabilities fixing uses the CPG's deep understanding of the codebase to identify vulnerabilities and generate context-aware fixes that do not break existing features. The AI analyses the code around the vulnerability to understand the intended functionality and then creates a fix without breaking existing features or introducing any new bugs. This method reduces the amount of time it takes to discover a vulnerability and fix it. It also relieves development teams and provides a reliable and consistent approach to fixing vulnerabilities.  What are some potential challenges and risks associated with the adoption of agentic AI in cybersecurity? Some of the potential risks and challenges include:

Ensuring trust and accountability in autonomous AI decision-making
Protecting AI systems against adversarial attacks and data manipulation
Building and maintaining accurate and up-to-date code property graphs
Ethics and social implications of autonomous systems
Integrating agentic AI into existing security tools and processes
How can organizations ensure that autonomous AI agents are trustworthy and accountable in cybersecurity? Organizations can ensure the trustworthiness and accountability of agentic AI by establishing clear guidelines and oversight mechanisms. This includes implementing robust testing and validation processes to verify the correctness and safety of AI-generated fixes, maintaining human oversight and intervention capabilities, and fostering a culture of transparency and responsible AI development. Regular audits, continuous monitoring, and explainable AI techniques can also help build trust in the decision-making processes of autonomous agents.  The following are some of the best practices for developing secure AI systems:

Adopting safe coding practices throughout the AI life cycle and following security guidelines
Protect against attacks by implementing adversarial training techniques and model hardening.
Ensuring data privacy and security during AI training and deployment
Conducting thorough testing and validation of AI models and generated outputs
Maintaining transparency in AI decision making processes
Regularly monitoring and updating AI systems to adapt to evolving threats and vulnerabilities
How can agentic AI help organizations keep pace with the rapidly evolving threat landscape? Agentic AI can help organizations stay ahead of the ever-changing threat landscape by continuously monitoring networks, applications, and data for emerging threats. These autonomous agents can analyze vast amounts of security data in real-time, identifying new attack patterns, vulnerabilities, and anomalies that might evade traditional security controls. By learning from each interaction and adapting their threat detection models, agentic AI systems can provide proactive defense against evolving cyber threats, enabling organizations to respond quickly and effectively. What role does machine learning play in agentic AI for cybersecurity? Machine learning is a critical component of agentic AI in cybersecurity. It allows autonomous agents to identify patterns and correlate data and make intelligent decisions using that information. Machine learning algorithms are used to power many aspects of agentic AI including threat detection and prioritization. They also automate the fixing of vulnerabilities. Machine learning improves agentic AI's accuracy, efficiency and effectiveness by continuously learning and adjusting.  Agentic AI can streamline vulnerability management processes by automating many of the time-consuming and labor-intensive tasks involved.  https://go.qwiet.ai/multi-ai-agent-webinar  can continuously scan codebases, identify vulnerabilities, and prioritize them based on their real-world impact and exploitability. They can also generate context-aware fixes automatically, reducing the time and effort required for manual remediation. By providing real-time insights and actionable recommendations, agentic AI enables security teams to focus on high-priority issues and respond more quickly and effectively to potential threats.

What are some examples of real-world agentic AI in cybersecurity? Examples of agentic AI in cybersecurity include:

Autonomous threat detection and response platforms that continuously monitor networks and endpoints for malicious activity
AI-powered vulnerability scanners that identify and prioritize security flaws in applications and infrastructure
Intelligent threat intelligence systems gather data from multiple sources and analyze it to provide proactive protection against emerging threats
Automated incident response tools can mitigate and contain cyber attacks without the need for human intervention
AI-driven fraud detection solutions that identify and prevent fraudulent activities in real-time
How can agentic AI bridge the cybersecurity skills gap and ease the burden on security team? Agentic AI can help address the cybersecurity skills gap by automating many of the repetitive and time-consuming tasks that security professionals currently handle manually. By taking on tasks such as continuous monitoring, threat detection, vulnerability scanning, and incident response, agentic AI systems can free up human experts to focus on more strategic and complex security challenges. Additionally, the insights and recommendations provided by agentic AI can help less experienced security personnel make more informed decisions and respond more effectively to potential threats.  Agentic AI helps organizations to meet compliance and regulation requirements more effectively. It does  this  by providing continuous monitoring and real-time threat detection capabilities, as well as automated remediation. Autonomous agents ensure that security controls and vulnerabilities are addressed promptly, security incidents are documented, and reports are made. The use of agentic AI raises new compliance concerns, including ensuring transparency, accountability and fairness in AI decision-making, as well as protecting privacy and security for data used to train and analyze AI. How can organizations integrate agentic AI into their existing security tools and processes? For organizations to successfully integrate agentic artificial intelligence into existing security tools, they should:

Assess the current security infrastructure to identify areas that agentic AI could add value.
Create a roadmap and strategy for the adoption of agentic AI, in line with security objectives and goals.
Make sure that AI agent systems are compatible and can exchange data and insights seamlessly with existing security tools.


Support and training for security personnel in the use of agentic AI systems and their collaboration.
Create governance frameworks to oversee the ethical and responsible use of AI agents in cybersecurity
What are some emerging trends and future directions for agentic AI in cybersecurity? Some emerging trends and directions for agentic artificial intelligence in cybersecurity include:

Increased collaboration and coordination between autonomous agents across different security domains and platforms
AI models with context-awareness and advanced capabilities that adapt to dynamic and complex security environments
Integration of agentic AI with other emerging technologies, such as blockchain, cloud computing, and IoT security
Exploration of novel approaches to AI security, such as homomorphic encryption and federated learning, to protect AI systems and data
AI explained techniques are being developed to increase transparency and confidence in autonomous security decisions
How can AI agents help protect organizations from targeted and advanced persistent threats? Agentic AI can provide a powerful defense against APTs and targeted attacks by continuously monitoring networks and systems for subtle signs of malicious activity. Autonomous agents are able to analyze massive amounts of data in real time, identifying patterns that could indicate a persistent and stealthy threat. Agentic AI, which adapts to new attack methods and learns from previous attacks, can help organizations detect APTs and respond more quickly, minimising the impact of a breach.

What are the advantages of using agentic AI to detect real-time threats and monitor security? The following are some of the benefits that come with using agentic AI to monitor security continuously and detect threats in real time:

Monitoring of endpoints, networks, and applications for security threats 24/7
Prioritization and rapid identification of threats according to their impact and severity
Reduced false positives and alert fatigue for security teams
Improved visibility into complex and distributed IT environments
Ability to detect novel and evolving threats that might evade traditional security controls
Security incidents can be dealt with faster and less damage is caused.
Agentic AI can significantly enhance incident response and remediation processes by:

Automatically detecting and triaging security incidents based on their severity and potential impact
Providing contextual insights and recommendations for effective incident containment and mitigation
Orchestrating and automating incident response workflows across multiple security tools and platforms
Generating detailed incident reports and documentation for compliance and forensic purposes
Continuously learning from incident data to improve future detection and response capabilities
Enabling faster, more consistent incident remediation and reducing the impact of security breaches
To ensure that security teams can effectively leverage agentic AI systems, organizations should:

Give comprehensive training about the capabilities, limitations and proper usage of agentic AI tools
Encourage security personnel to collaborate with AI systems, and provide feedback on improvements.
Create clear guidelines and protocols for human-AI interactions, including when AI recommendations should be trusted and when issues should be escalated to human review.
Invest in upskilling programs that help security professionals develop the necessary technical and analytical skills to interpret and act upon AI-generated insights
To ensure an holistic approach to the adoption and use of agentic AI, encourage cross-functional collaboration among security, data science and IT teams.
How can organizations balance

How can we balance the benefits of AI and human decision-making with the necessity for human oversight in cybersecurity? To achieve the best balance between using agentic AI in cybersecurity and maintaining human oversight, organizations should:

Establish clear roles and responsibilities for human and AI decision-makers, ensuring that critical security decisions are subject to human review and approval
Implement transparent and explainable AI techniques that allow security personnel to understand and trust the reasoning behind AI recommendations
Test and validate AI-generated insights to ensure their accuracy, reliability and safety
Maintain human-in-the-loop approaches for high-stakes security scenarios, such as incident response and threat hunting
Foster a culture of responsible AI use, emphasizing the importance of human judgment and accountability in cybersecurity decision-making
Regularly monitor and audit AI systems to identify potential biases, errors, or unintended consequences, and make necessary adjustments to ensure optimal performance and alignment with organizational security goals