Agentic Artificial Intelligence Frequently Asked Questions

· 7 min read
Agentic Artificial Intelligence Frequently Asked Questions

What is agentic AI, and how does it differ from traditional AI in cybersecurity? Agentic AI is a term used to describe autonomous, goal-oriented, systems that are able to perceive their environment, take decisions, and act to achieve specific goals. Agentic AI is a more flexible and adaptive version of traditional AI. In cybersecurity, agentic AI enables continuous monitoring, real-time threat detection, and proactive response capabilities.
How can agentic AI enhance application security (AppSec) practices? Agentic AI has the potential to revolutionize AppSec by integrating intelligent agents within the Software Development Lifecycle (SDLC). These agents can monitor code repositories continuously, analyze commits to find vulnerabilities, and use advanced techniques such as static code analysis and dynamic testing. Agentic AI can also prioritize vulnerabilities based on their real-world impact and exploitability, providing contextually aware insights for remediation.  A code property graph is a rich representation that shows the relationships between code elements such as variables, functions and data flows. Agentic AI can gain a deeper understanding of the application's structure and security posture by building a comprehensive CPG. This contextual awareness enables the AI to make more accurate and relevant security decisions, prioritize vulnerabilities effectively, and generate targeted fixes. How does AI-powered automatic vulnerability fixing work, and what are its benefits? AI-powered automatic vulnerabilities fixing uses the CPG's deep understanding of the codebase to identify vulnerabilities and generate context-aware fixes that do not break existing features. The AI analyses the code around the vulnerability to understand the intended functionality and then creates a fix without breaking existing features or introducing any new bugs. This method reduces the amount of time it takes to discover a vulnerability and fix it. It also relieves development teams and provides a reliable and consistent approach to fixing vulnerabilities.  What potential risks and challenges are associated with the use of agentic AI for cybersecurity? Some of the potential risks and challenges include:

Ensuring trust and accountability in autonomous AI decision-making
Protecting AI systems against adversarial attacks and data manipulation
Maintaining accurate code property graphs
Addressing ethical and societal implications of autonomous systems
Integrating AI agentic into existing security tools
Organizations can ensure the trustworthiness and accountability of agentic AI by establishing clear guidelines and oversight mechanisms. This includes implementing robust testing and validation processes to verify the correctness and safety of AI-generated fixes, maintaining human oversight and intervention capabilities, and fostering a culture of transparency and responsible AI development. Regular audits and continuous monitoring can help to build trust in autonomous agents' decision-making processes. What are the best practices to develop and deploy secure agentic AI? Best practices for secure agentic AI development include:

Adopting safe coding practices throughout the AI life cycle and following security guidelines
Protect against attacks by implementing adversarial training techniques and model hardening.
Ensuring data privacy and security during AI training and deployment
Conducting thorough testing and validation of AI models and generated outputs
Maintaining transparency in AI decision making processes
Regularly monitoring and updating AI systems to adapt to evolving threats and vulnerabilities
By continuously monitoring data, networks, and applications for new threats, agentic AI can assist organizations in keeping up with the rapidly changing threat landscape. These autonomous agents are able to analyze large amounts of data in real time, identifying attack patterns, vulnerabilities and anomalies which might be evading traditional security controls. By learning from each interaction and adapting their threat detection models, agentic AI systems can provide proactive defense against evolving cyber threats, enabling organizations to respond quickly and effectively. What role does machine-learning play in agentic AI?  instant agentic ai security  is not complete without machine learning. It allows autonomous agents to identify patterns and correlate data and make intelligent decisions using that information. Machine learning algorithms are used to power many aspects of agentic AI including threat detection and prioritization. They also automate the fixing of vulnerabilities. By continuously learning and adapting, machine learning helps agentic AI systems improve their accuracy, efficiency, and effectiveness over time.  Agentic AI can streamline vulnerability management processes by automating many of the time-consuming and labor-intensive tasks involved. Autonomous agents can continuously scan codebases, identify vulnerabilities, and prioritize them based on their real-world impact and exploitability. They can also generate context-aware fixes automatically, reducing the time and effort required for manual remediation. Agentic AI allows security teams to respond to threats more effectively and quickly by providing actionable insights in real time.

What are some real-world examples of agentic AI being used in cybersecurity today? Examples of agentic AI in cybersecurity include:

Platforms that automatically detect and respond to malicious threats and continuously monitor endpoints and networks.
AI-powered vulnerability scanners that identify and prioritize security flaws in applications and infrastructure
Intelligent threat intelligence systems that gather and analyze data from multiple sources to provide proactive defense against emerging threats
Autonomous incident response tools that can contain and mitigate cyber attacks without human intervention
AI-driven fraud detection solutions that identify and prevent fraudulent activities in real-time
How can agentic AI help bridge the skills gap in cybersecurity and alleviate the burden on security teams? Agentic AI can help address the cybersecurity skills gap by automating many of the repetitive and time-consuming tasks that security professionals currently handle manually. By taking on tasks such as continuous monitoring, threat detection, vulnerability scanning, and incident response, agentic AI systems can free up human experts to focus on more strategic and complex security challenges. Additionally, the insights and recommendations provided by agentic AI can help less experienced security personnel make more informed decisions and respond more effectively to potential threats. What are the implications of agentic AI on compliance and regulatory requirements for cybersecurity? Agentic AI can help organizations meet compliance and regulatory requirements more effectively by providing continuous monitoring, real-time threat detection, and automated remediation capabilities. Autonomous agents can ensure that security controls are consistently enforced, vulnerabilities are promptly addressed, and security incidents are properly documented and reported. However, the use of agentic AI also raises new compliance considerations, such as ensuring the transparency, accountability, and fairness of AI decision-making processes, and protecting the privacy and security of data used for AI training and analysis. How can organizations integrate AI with their existing security processes and tools? For organizations to successfully integrate agentic artificial intelligence into existing security tools, they should:

Assess the current security infrastructure to identify areas that agentic AI could add value.
Create a roadmap and strategy for the adoption of agentic AI, in line with security objectives and goals.
Ensure that agentic AI systems are compatible with existing security tools and can seamlessly exchange data and insights
Provide training and support for security personnel to effectively use and collaborate with agentic AI systems
Establish governance frameworks and oversight mechanisms to ensure the responsible and ethical use of agentic AI in cybersecurity
What are some emerging trends in agentic AI and their future directions? Some emerging trends and directions for agentic artificial intelligence in cybersecurity include:

Increased collaboration and coordination between autonomous agents across different security domains and platforms
AI models with context-awareness and advanced capabilities that adapt to dynamic and complex security environments
Integration of agentic AI with other emerging technologies, such as blockchain, cloud computing, and IoT security


Exploration of novel approaches to AI security, such as homomorphic encryption and federated learning, to protect AI systems and data
AI explained techniques are being developed to increase transparency and confidence in autonomous security decisions
Agentic AI can provide a powerful defense against APTs and targeted attacks by continuously monitoring networks and systems for subtle signs of malicious activity. Autonomous agents can analyze vast amounts of security data in real-time, identifying patterns and anomalies that might indicate a stealthy and persistent threat. Agentic AI, which adapts to new attack methods and learns from previous attacks, can help organizations detect APTs and respond more quickly, minimising the impact of a breach.

The benefits of using agentic AI for continuous security monitoring and real-time threat detection include:

24/7 monitoring of networks, applications, and endpoints for potential security incidents
Prioritization and rapid identification of threats according to their impact and severity
Security teams can reduce false alarms and fatigue by reducing the number of false positives.
Improved visibility of complex and distributed IT environments
Ability to detect novel and evolving threats that might evade traditional security controls
Faster response times and minimized potential damage from security incidents
Agentic AI can significantly enhance incident response and remediation processes by:

Automatically detecting and triaging security incidents based on their severity and potential impact
Providing contextual insights and recommendations for effective incident containment and mitigation
Orchestrating and automating incident response workflows across multiple security tools and platforms
Generating detailed incident reports and documentation for compliance and forensic purposes
Learning from incidents to continuously improve detection and response capabilities
Enabling faster and more consistent incident remediation, reducing the overall impact of security breaches
What are some considerations for training and upskilling security teams to work effectively with agentic AI systems? Organizations should:

Give comprehensive training about the capabilities, limitations and proper usage of agentic AI tools
Encourage security personnel to collaborate with AI systems, and provide feedback on improvements.
Develop clear protocols and guidelines for human-AI interaction, including when to trust AI recommendations and when to escalate issues for human review
Invest in programs to help security professionals acquire the technical and analytic skills they need to interpret and act on AI-generated insights
To ensure an holistic approach to the adoption and use of agentic AI, encourage cross-functional collaboration among security, data science and IT teams.
How can organizations balance

How can we balance the benefits of AI and human decision-making with the necessity for human oversight in cybersecurity? To achieve the best balance between using agentic AI in cybersecurity and maintaining human oversight, organizations should:

Establish clear roles and responsibilities for human and AI decision-makers, ensuring that critical security decisions are subject to human review and approval
Use AI techniques that are transparent and easy to explain so that security personnel can understand and believe the reasoning behind AI recommendations
Test and validate AI-generated insights to ensure their accuracy, reliability and safety
Maintain human-in-the-loop approaches for high-stakes security scenarios, such as incident response and threat hunting
Foster a culture of responsible AI use, emphasizing the importance of human judgment and accountability in cybersecurity decision-making
Regularly monitor and audit AI systems to identify potential biases, errors, or unintended consequences, and make necessary adjustments to ensure optimal performance and alignment with organizational security goals